skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fung, Samy Wu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Control Barrier Functions (CBFs) are an effective methodology to ensure safety and performative efficacy in real-time control applications such as power systems, resource allocation, autonomous vehicles, robotics, etc. This approach ensures safety independently of the high-level tasks that may have been pre-planned off-line. For example, CBFs can be used to guarantee that a vehicle will remain in its lane. However, when the number of agents is large, computation of CBFs can suffer from the curse of dimensionality in the multi-agent setting. In this work, we present Mean-field Control Barrier Functions (MF-CBFs), which extends the CBF framework to the mean-field (or swarm control) setting. The core idea is to model a population of agents as probability measures in the state space and build corresponding control barrier functions. Similar to traditional CBFs, we derive safety constraints on the (distributed) controls but now relying on the differential calculus in the space of probability measures. 
    more » « less
    Free, publicly-accessible full text available July 8, 2026
  2. Mean-field control (MFC) problems aim to find the optimal policy to control massive populations of interacting agents. These problems are crucial in areas such as economics, physics, and biology. We consider the nonlocal setting, where the interactions between agents are governed by a suitable kernel. For N agents, the interaction cost has O(N2) complexity, which can be prohibitively slow to evaluate and differentiate when N is large. To this end, we propose an efficient primal-dual algorithm that utilizes basis expansions of the kernels. The basis expansions reduce the cost of computing the interactions, while the primal-dual methodology decouples the agents at the expense of solving for a moderate number of dual variables. We also demonstrate that our approach can further be structured in a multi-resolution manner, where we estimate optimal dual variables using a moderate N and solve decoupled trajectory optimization problems for large N. We illustrate the effectiveness of our method on an optimal control of 5000 interacting quadrotors. 
    more » « less
    Free, publicly-accessible full text available July 8, 2026
  3. Abstract Indecipherable black boxes are common in machine learning (ML), but applications increasingly require explainable artificial intelligence (XAI). The core of XAI is to establish transparent and interpretable data-driven algorithms. This work provides concrete tools for XAI in situations where prior knowledge must be encoded and untrustworthy inferences flagged. We use the “learn to optimize” (L2O) methodology wherein each inference solves a data-driven optimization problem. Our L2O models are straightforward to implement, directly encode prior knowledge, and yield theoretical guarantees (e.g. satisfaction of constraints). We also propose use of interpretable certificates to verify whether model inferences are trustworthy. Numerical examples are provided in the applications of dictionary-based signal recovery, CT imaging, and arbitrage trading of cryptoassets. Code and additional documentation can be found athttps://xai-l2o.research.typal.academy. 
    more » « less
  4. First-order optimization algorithms are widely used today. Two standard building blocks in these algorithms are proximal operators (proximals) and gradients. Although gradients can be computed for a wide array of functions, explicit proximal formulas are known for only limited classes of functions. We provide an algorithm, HJ-Prox, for accurately approximating such proximals. This is derived from a collection of relations between proximals, Moreau envelopes, Hamilton–Jacobi (HJ) equations, heat equations, and Monte Carlo sampling. In particular, HJ-Prox smoothly approximates the Moreau envelope and its gradient. The smoothness can be adjusted to act as a denoiser. Our approach applies even when functions are accessible only by (possibly noisy) black box samples. We show that HJ-Prox is effective numerically via several examples. 
    more » « less
  5. Mean field games (MFG) and mean field control (MFC) are critical classes of multiagent models for the efficient analysis of massive populations of interacting agents. Their areas of application span topics in economics, finance, game theory, industrial engineering, crowd motion, and more. In this paper, we provide a flexible machine learning framework for the numerical solution of potential MFG and MFC models. State-of-the-art numerical methods for solving such problems utilize spatial discretization that leads to a curse of dimensionality. We approximately solve high-dimensional problems by combining Lagrangian and Eulerian viewpoints and leveraging recent advances from machine learning. More precisely, we work with a Lagrangian formulation of the problem and enforce the underlying Hamilton–Jacobi–Bellman (HJB) equation that is derived from the Eulerian formulation. Finally, a tailored neural network parameterization of the MFG/MFC solution helps us avoid any spatial discretization. Our numerical results include the approximate solution of 100-dimensional instances of optimal transport and crowd motion problems on a standard work station and a validation using a Eulerian solver in two dimensions. These results open the door to much-anticipated applications of MFG and MFC models that are beyond reach with existing numerical methods. 
    more » « less